# Strong Motion Estimation and Seismic Microzoning in Major Cities in Peru

Research Plan of **G1 Group** (Seismic Motion and Geotechnical / SMGT Group)

Japanese members: S. Nakai, T. Sekiguchi, D. Calderon (Chiba Univ.), H. Yamanaka (Titech), H. Arai, S. Koyama (BRI), N. Pulido (NIED) Peruvian members: Z. Aguilar, F. Lazares, D. Luna, L. Chang, P. Peri, R. Piedra (CISMID), H. Tavera, I. Bernal, L. Ocola, J. Gomez (IGP)

March 15, 2010

#### Overall Flow Chart of the Project





# Strong Motion Records and Historical Seismicity



## **Strong Motion Observation**



## Source Model and Strong Motion Simulation



#### Construction of Source Model

#### Strong Motion Simulation by 3D Finite Difference Method

#### Surface Soil Investigation (1)

| (SPT E 01           |                            |                  |                       |              |           |                            |                                                                                                                                                                                                                                                                                  |                                                                             | 深        | 柱                |                                                                                                                                                                                  | SDT            | PS Logging                                          |                        |
|---------------------|----------------------------|------------------|-----------------------|--------------|-----------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------|------------------------|
| Profundiciad<br>(m) | Espesor del estrato<br>(m) | Muestra obtenida | Ctastficación<br>SUCS | ogia grafica | Res       | ultados<br>campo           | Descripción del estrato                                                                                                                                                                                                                                                          | ENSAYO DE PENETRACION<br>ESTANDAR (SPT)<br>Golpes / 30 cm<br>10 20 30 40 50 | 度<br>(m) | 北図               | Soil                                                                                                                                                                             | N-Value        | V <sub>S</sub> (m/s)                                | V <sub>P</sub> (m/s)   |
|                     |                            |                  |                       | Simbot       | H.N.<br>% | D. N.<br>gicm <sup>a</sup> |                                                                                                                                                                                                                                                                                  |                                                                             |          |                  |                                                                                                                                                                                  |                |                                                     |                        |
| 2                   | 3.10                       | M-1              | GM                    | 04242430     | 1         | 1                          | Grava limosa de TM 3", matriz de arena limosa con lentes de arena<br>gruesa, compacidad madia y humedad media.<br>SILITY GRAVEL CC HAXHUH SITE<br>3", juitth SILITY SAND - COHLACITY<br>HEDIUM AND HEDIUM HURIDITY                                                               |                                                                             | 5 -      |                  | ○ 建立(形理)<br>建立(水正型(和器)<br>建立(水正型(和器)<br>建立(水正型(本型))<br>第重(小型(形定))<br>有機質料±<br>有機質料±<br>の<br>単立(水正型)<br>を<br>した。<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の |                | Vp=430m/s<br>✓ GL-3.0m/s<br>Vp=1030m/s<br>✓ GL-7.0m | S<br>S<br>Cit7.0m      |
|                     | ١e                         | ew.              | / i                   | nc           | le        | x                          | has to be introc                                                                                                                                                                                                                                                                 | luced.                                                                      | 15-      | 3<br>3<br>3<br>4 | シルト開始土<br>                                                                                                                                                                       |                | GL-19.0m                                            | Cl-19.0m               |
| 6                   |                            |                  |                       |              |           |                            |                                                                                                                                                                                                                                                                                  |                                                                             | 25-      |                  | シルト                                                                                                                                                                              |                | GL-25.0m                                            | CIL-22.0m<br>Vs=320m/s |
| 8                   | 8.90                       | M-2              | SP                    |              | -         | -                          | Arena media pobremente gradada, presenta indusiones asiadas de<br>gravita redondeada y cochuelas, compacidad media aumentando con la<br>profundidad.<br>PODRLY GRADED SARD, WITH<br>SIALL ROUMDED GRAVELS AND SHALL<br>SIALLS, COMACITY TEDIUM THAT<br>INCREASES WITH THE DEPTH. |                                                                             | 30-      |                  | <b>織</b> 砂                                                                                                                                                                       |                | CI_35.0m                                            |                        |
| 10                  |                            |                  |                       |              |           |                            |                                                                                                                                                                                                                                                                                  |                                                                             | 40-      |                  | シルト型り織砂                                                                                                                                                                          |                | CI43.0m CI4                                         |                        |
|                     |                            |                  |                       |              |           | 1                          |                                                                                                                                                                                                                                                                                  |                                                                             |          |                  | シルト通り撮砂                                                                                                                                                                          | 1++++ <b>ř</b> | Vp=1720m/s                                          | /s=530m/s°             |

# Surface Soil Investigation (2)

Borehole and PS logging will be conducted at several sites to examine the soil profiles and the soil properties of the surface soil.





#### Surface Wave Method

In order to estimate the shallow soil profiles, the surface wave method will be conducted, in addition to single point / array microtremor measurements.

#### S-Wave Velocity Profile



#### **Array Measurement of Microtremors**

Array measurements of microtremors are conducted in several locations in order to estimate the deep soil profile of the target site in 1D, 2D or 3D.





#### **Strong Motion Prediction**



Fault Model  $\rightarrow$  Deep Soil Structure  $\rightarrow$  Surface Soil Structure  $\rightarrow$  Strong Motion Prediction Analysis based on Wave Prop. Theory





#### **Prediction of Response of Buildings**



#### Prediction of Tsunami Run-up



15

## Seismic Risk of Slopes

- In Lima, there are many steep slopes where houses are densely built.
- Ground motion tends to become large due to ground irregularity (slopes), which may cause failure or landslide during an earthquake.







## Seismic Microzoning



#### Summary: Research Plans of G1 Group

- Construction of fault models for large scenario earthquakes along the subducting plate.
  - Survey of historical seismic activities.
  - Strong motion observations by installing seismometers.
- Construction of deep and shallow soil models.
  - Geophysical and geotechnical surveys including borehole and PS loggings.
  - Surface wave and microtremor measurements.
  - Analysis of earthquake data from small events.
- Construction of microzonation maps.
  - Strong motion simulation based on fault models and deep/shallow soil models.
  - Estimation of amplification due to surface soils.
  - Estimation of slope failure.

#### Strong Motion Simulation

- Simulation of broadband strong motion on engineering bedrock from different scenario earthquakes in Lima, Pisco and Arequipa areas using a hybrid approach.
- 3D FDM in long-period range, and stochastic method using 1D model in short-period range).
- Calculation of surface motion considering 1D amplification in surface layers due to input motion on engineering bedrock.





 $\rho = 2.5(g/cm^3)$ 

)

## Research Plans of SM/GT Group

| Fault models for large scenario earthquakes along the subducting plate with cooperation of Tsunami group. |
|-----------------------------------------------------------------------------------------------------------|
| Installation of strong motion instruments on ground or BF of buildings (5 locations in Lima at first)     |
| Geophysical and geotechnical surveys for shallow and deep S-wave structure including borehole loggings    |
| Analysis of earthquake data from small events to characterize source, path and site amplification         |
| Calculation of site amplifications for microzonation map                                                  |

- Estimation of slope failure from geotechnical surveys
- Strong motion simulation based on hybrid approach of theoretical and empirical methods

23

#### Analysis of Small Earthquake Data

- Estimation of source characteristics of small events, Qfactor for the crust and mantle, site amplification
- Estimation of envelope function of small events for use of stochastic Green's function
- Exploration of deep S-wave velocity profiles using earthquake data, such as receiver function, phase velocity and Rayleigh wave ellipticity
- Validation of geological models from geophysical and geotechnical surveys using 1D site amplification or 3D simulation of moderate events
- Examination of applicability of existing attenuation equations

# Estimation of Empirical Site Amplification from from Earthquake Data



#### Inversion of Rayleigh Wave Phase Velocity for Exploration of Deep Vs Profile





#### Geophysical & Geotechnical surveys





## Seismic Risk of Slopes (2)









#### Research Plan for Evaluation of Risk of Slopes

- □ The research plan includes:
  - Select a few target sites in Lima, where houses are densely built.
  - Collect soil investigation data, if any.
  - Conduct soil investigation, if possible.
  - Conduct a series of microtremor measurements.
  - Construct soil models and perform finite element analyses.
  - Evaluate seismic risks of the area with slopes based on these data along with the results from other groups in this project.

